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Abstract. By adjusting external control signal, rather than some available parameters of the system, we
modify the straight-line stabilization method for stabilizing an unstable periodic orbit in a neighborhood
of an unstable fixed point formulated by Ling Yang et al., and derive a more simple analytical expression
of the external control signal adjustment. Our technique solves the problem that the unstable fixed point
is independent of the system parameters, for which the original straight-line stabilization method is not
suitable. The method is valid for controlling dissipative chaos, Hamiltonian chaos and hyperchaos, and
may be most useful for the systems in which it may be difficult to find an accessible system parameter in
some cases. The method is robust under the presence of weak external noise.

PACS. 05.45.+a Nonlinear dynamics and nonlinear dynamical systems – 05.45.Gg Control of chaos,
applications of chaos – 05.45.Pq Numerical simulations of chaotic models

The control of chaos is an interesting subject in nonlinear
dynamics. A wide variety of methods have been proposed
for controlling chaos in nonlinear dynamical systems since
Ott, Grebogi and Yorke (OGY) gave a method to stabi-
lize an unstable periodic orbit by a small perturbation [1].
However, a large number of works in the literatures so far
have concentrated on dissipative systems [2–7]. For conser-
vative systems, controlling chaos is more difficult because
there are no chaotic attractors and the search for chaotic
behavior involves large areas of the phase space. The ini-
tial conditions are special controlling parameters and have
important roles in describing chaotic behavior. Except for
the extension of the OGY method by Lai et al. [8], a gen-
eral way is lack for controlling Hamiltonian chaos. Re-
cently, Ling Yang et al. [9,10] proposed the straight-line
stabilization method for controlling hyperchaos which is
to guide an unstable orbit in a neighborhood of a “fully”
unstable fixed point to go to the fixed point directly along
the straight line connecting the orbit (at a given time) and
the fixed point. The method does not require any previ-
ous knowledge of the system. In this paper, we modify the
straight-line stabilization method by adjusting the exter-
nal control signal, rather than some available parameters
of the system, and derive a more simple expression of ex-
ternal control signal adjustment. Our technique solves the
problem that the unstable fixed point is independent of the
system parameters, for which the original straight-line sta-
bilization method is not suitable. The method is valid for
controlling dissipative chaos, Hamiltonian chaos and hy-

a e-mail: haiboxu65@hotmail.com

perchaos. In particular, it might be of application in those
situations where find an accessible system parameter may
be a difficult task, namely, the case of certain chemical,
biological, or spatially nonhomogeneous systems.

We consider the following discrete time dynamical
system

xn+1 = F(xn), (1)

where x ∈ RN , F is a sufficiently smooth function of x.
We act the external control signal on the system in the
following form

xn+1 = F(xn, ε) = F(xn) + ε, (2)

where ε ∈ RN is the external control signal.
Let x0

∗ be the fixed point of the map with ε = 0.
As long as the determinant of the Jacobian matrix J =
(∂F(xn)/∂xn)xn=x0

∗
is not equal to zero, the map (2) with

small control signal ε has a fixed point in the neighbor-
hood of x0

∗. Denote this fixed point by x∗ and expand it
to the first order about ε = 0, i.e.

x∗ − x0
∗ = Mε, (3)

where M = (∂x∗/∂ε)ε=0. Meanwhile, the fixed point x∗
with small control signal ε satisfies the equation x∗ =
F(x∗)+ ε. We expand F(x∗) to the first order about x∗ =
x0
∗: F(x∗) = F(x0

∗) + J(x∗ − x0
∗) = x0

∗ + J(x∗ − x0
∗), and

get

x∗ − x0
∗ = −(J− I)−1ε, (4)
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where I is the identity matrix. Comparing equations (3)
and (4), we have

M = −(J− I)−1. (5)

It is noticed that the map (2) avoids the case of M = 0, in
other words, our technique solves the problem which the
unstable fixed point is independent of the system param-
eters. However, it is not always the case in equation (1)
of reference [9]. This means the original straight-line sta-
bilization method has limitations in the sense.

The straight-line stabilization method [9,10] requires

xn+1 − x0
∗ = k(xn − x0

∗), (6)

where k is a constant and −1 < k < 1. We expand xn+1

to the first order about xn = x∗, i.e.

xn+1 − x∗ = J̃(xn − x∗), (7)

where J̃ = (∂F(xn, ε)/∂xn)xn=x∗ is the Jacobian matrix
of the map with small ε at xn = x∗. The matrix J̃ can be
approximated by matrix J. Hence, for ε→ 0,

xn+1 − x∗ = J(xn − x∗). (8)

Using equations (3, 5, 6, 8) to eliminate xn+1 and x∗, we
obtain

ε = εn = (kI− J)(xn − x0
∗). (9)

Here ε has been replaced by εn to indicate that the control
signal adjustment is in the nth iteration of the map, and
xn is not necessarily close to x0

∗. The analytical expression
of the control signal adjustment depends only on J. This is
the major advantage of our method, which presents a more
convenient approach for controlling chaos. Furthermore, in
the straight-line stabilization method the unstable orbit
is forced to go directly towards the fixed point itself, and
not via the stable manifold. This implies that the method
presents a possible solution to the problem of long chaotic
transient [1,6]. In dissipative systems, this may not be as
serious a problem because after a relatively short chaotic
transient, the trajectory will move back to the desired con-
trolling region. In Hamiltonian systems, however, the tra-
jectory may experience an extremely long transient before
it come close to the controlling region.

The above analysis can be extended to periodic orbits
with period greater than one. The most direct way is to
take the T th iteration of the map, where T denotes the
period of the orbit to be stabilized. For the T times iter-
ated map, any point on the periodic orbit is a fixed point,
and we can then apply the above discussion where F(xn)
may be replaced by FT (xn) in equation (2). We rewrite
equations (2) and (9) as

xn+1 = FT (xn, ε) = FT (xn) + ε, (10)

ε = εn = (kI− JT )(xn − x0
∗). (11)

Here x0
∗ is one of the fixed points of the unstable period-T

orbit, and JT = (∂FT (xn)/∂xn)xn=x0
∗
.

For an unstable period-T orbit to be stabilized, it is
worthwhile to indicate the analytical expression of the
control signal ε if the analytical expression of F(xn) is
known and that of FT (xn) is difficult to obtain. In nu-
merical calculation, we can write the control signal in the
form

xn+1 = F(xn, ε)

= F(xn) + εn+1−T

∞∑
m=1

δ(n+ 1−mT ), (12)

where εn+1−T = (kI − JT )(xn+1−T − x0
∗), and

JT = ∂F(xT−1
∗ )

∂xn+T−1

∂F(xT−2
∗ )

∂xn+T−2
· · · ∂F(x0

∗)
∂xn

for this consequence
(x0
∗,x

1
∗, · · · ,xT−1

∗ ) generated by successive iteration of the
initial condition x0

∗. In fact, equation (12) is equivalent to
equation (10).

Although the discrete time dynamical system is dis-
cussed in the above, this method can be generalized to
the continuous time dynamical systems. We may write
the equations describing the system in iteration form by
employing a fourth-order Runge-Kutta method

δxn+1 = Jnδxn. (13)

Here the step length has been carefully chosen in order to
avoid spurious behavior. The behavior of the system will
be simplified by constructing a proper Poincaré section.
If the position of the system piercing the section from
the same side along the trajectory every interval T times
is the same point, the point is called the fixed point of
the period-T orbit. Using the above method, the unstable
period-T orbit can be also stabilized.

The method can be used in practical problems, for
which any previous analytical knowledge of the system
dynamics is usually not available, because the elements
of the Jacobian matrix are experimentally accessible. The
region where the stabilization method is valid can also be
mathematically estimated [10].

In the following, we first demonstrate the original
straight-line stabilization method and the modified one
with the Henon map in which both methods can be ap-
plied, to compare their behaviors. The Henon map [11] is
in the form

xn+1 = 1− ax2
n + yn,

yn+1 = bxn. (14)

In the original straight-line stabilization method, the pa-
rameters a and b are the control parameters which can be
written in the form

a = a0 + δa, b = b0 + δb. (15)

Here a0, b0 are nominal parameter values, and δa, δb are
small perturbations of the parameters. In this section, we
consider a0 = 1.4, b0 = 0.3. When ε = (δa, δb) = (0, 0),
an unstable fixed point is at (x0

∗, y
0
∗) = (0.63135, 0.18941).

It is easy to get that J =
(
−2a0x

0
∗ 1

0.3 0

)
. With a small
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Fig. 1. The stabilization of the unstable fixed point
(0.63135, 0.18941) using both the original method and the
modified one. The two orbits starting from the same initial
point (0.75, 0.35) converge to the unstable fixed point very
quickly.

perturbation of the parameter (i.e. ε 6= 0), the map has
a fixed point in the neighborhood of (x0

∗, y
0
∗), which is

denoted by (x∗, y∗). We can obtain that

M =

(
∂x∗
∂a

∂x∗
∂b

∂y∗
∂a

∂x∗
∂b

)
a=a0,b=b0

=

(
2a0∆

−1+1−b0−∆
2a0

1+(b0−1)∆−1

2a0

b0(2a0∆
−1+1−b0−∆)
2a0

b0(1+(b0−1)∆−1)
2a0

+ x0
∗

)
,

where ∆ =
√

(1− b0)2 + 4a0. Therefore the control signal
should be that

ε = εn =
(
δan
δbn

)
= M−1(J− I)−1(J− kI)

(
xn − x0

∗
yn − y0

∗

)
= 3.97357

(
−1.43178 0.63135
−0.11958 0.19930

)(
xn − 0.63135
yn − 0.18941

)
,

(16)

where k = 0.5. Numerical result is shown in Figure 1.
The orbit starting from the point (0.75, 0.35) converges to
the unstable fixed point (x0

∗, y
0
∗) = (0.63135, 0.18941) very

quickly under iterations of the map with a = a0 +δan, b =
b0 + δbn given by equation (16).

In our modified method, we act the external control
signal ε = (p, q) on the Henon map in the following form

xn+1 = 1− ax2
n + yn + p,

yn+1 = bxn + q, (17)

where a = a0 = 1.4, b = b0 = 0.3. When ε = (p, q) = (0, 0),
an unstable fixed point is at (x0

∗, y
0
∗) = (0.63135, 0.18941).

According to equation (9), it is easy to get that

ε = εn =
(
pn
qn

)
= (kI− J)

(
xn − x0

∗
yn − y0

∗

)
=
(

2.26779 −1
−0.3 0.5

)(
xn − 0.63135
yn − 0.18941

)
, (18)

where k = 0.5. Numerical result is also shown in Figure 1.
The orbit starting from the point (0.75, 0.35) converges to
the unstable fixed point (x0

∗, y
0
∗) = (0.63135, 0.18941) very

quickly under iterations of the map with (pn, qn) given by
equation (18).

From the example, we can see that our modified
method presents a more convenient approach for control-
ling chaos.

The work is fewer for controlling Hamiltonian chaos
than dissipative chaos. Without loss of generality, we
choose the standard map [12] as an application, which has
become a paradigm for the study of properties of chaotic
dynamics in Hamiltonian systems

Jn+1 = Jn −
β

2π
sin(2πθn), (mod 1)

θn+1 = θn + Jn −
β

2π
sin(2πθn) (mod 1). (19)

If we select the system parameter β to be the control pa-
rameter, we obtain M = 0 for the unstable fixed point
x0
∗ = (J0

∗ , θ
0
∗) = (0, 1/2), in which the original straight-line

stabilization method cannot be used. In this case, we use
our technique and act the external control signal ε = (p, q)
on the standard map in the following form

Jn+1 = Jn −
1

2π
sin(2πθn) + p, (mod 1)

θn+1 = θn + Jn −
1

2π
sin(2πθn) + q (mod 1). (20)

In this paper, we let β = 1. When ε = (p, q) = (0, 0),
an unstable fixed point of the period-1 orbit is at x0

∗ =

(J0
∗ , θ

0
∗) = (0, 1/2). It is easy to get that J =

(
1 1
1 2

)
.

Therefore the control signal should be that

ε = εn =
(
pn
qn

)
=
(
k − 1 −1
−1 k − 2

)(
Jn

θn − 1/2

)

=
(

(k − 1)Jn − (θn − 1/2)
−Jn + (k − 2)(θn − 1/2)

)
.

For an unstable period-10 orbit generated
by successive iteration of the initial fixed point
(Jn, θn) = (0.73577, 0.52669), the Jacobian matrix

J =
(
−0.64960 −0.63680
7.04563 5.38366

)
. According to equation (12),

the control signal

ε = εn−9

∞∑
m=1

δ(n+ 1− 10m)

=
(
k + 0.64960 0.63680
−7.04563 k − 5.38366

)(
Jn−9 − 0.73577
θn−9 − 0.52669

)
×
∞∑
m=1

δ(n+ 1− 10m).

Figures 2a and 2b show the stabilization of the unsta-
ble period-1 and period-10 orbits when k = 1/2 for the
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Fig. 2. The stabilization of the unstable period-1 and period-
10 orbits when k = 1/2 for the standard map. Four orbits
starting from points A, B, C, and D converge to the unsta-
ble fixed points (0, 1/2) in (a) and (0.73577, 0.52669) in (b),
respectively.

standard map, respectively. There are four orbits start-
ing from points A, B, C, D, respectively. With the control
signal adjustment, all the orbits converge to the unstable
fixed point very quickly.

An important issue whether a control method is use-
ful in experiments is its robustness against the applica-
tion of external noise. In this section, we consider the
Gaussian white noise generated by using the Box-Muller
method [13], and introduce additive noise in the form

(xi)′n = (xi)n + ρξn, (i = 1, 2, · · · , N) (21)

where ρ denotes the intensity of external noise.

〈ξn〉 = 0, 〈ξnξn′〉 = δnn′ . (22)

Figure 3 shows the effect of noise on the controlled sys-
tem corresponding to the period-1 and period-10 orbits,
respectively. The intensities of noise are ρ = 5.0 × 10−4

in (a) and ρ = 5.0 × 10−5 in (b). This shows that our
method is robust against the presence of weak external
noise. The numerical results also show that the effect of

Fig. 3. The effect of noise on the controlled system correspond-
ing to the period-1 and period-10 orbits, respectively. The in-
tensities of noise are ρ = 5.0× 10−4 in (a) and ρ = 5.0× 10−5

in (b).

noise is more sensitive for higher periodic orbits than that
for lower periodic orbits.

In conclusion, we have shown how an unstable periodic
orbit in the neighborhood of an unstable fixed point can
be stabilized. The unstable periodic orbit can be stabi-
lized by adjusting the external control signal, rather than
some available parameters of the system. We derive a sim-
ple analytical expression of the external control signal ad-
justment. Our technique avoids the case of M = 0, in
other words, our technique solves the problem that the
unstable fixed point is independent of the system param-
eters. However, it is not always the case in equation (1)
of reference [9]. This means that our modified method is
more general than the original straight-line stabilization
method in the sense. The new method is valid for control-
ling dissipative chaos, Hamiltonian chaos and hyperchaos.
In particular, this method might be of application in those
situations where finding an accessible system parameter
may be a difficult task, namely, the case of certain chem-
ical, biological, or spatially nonhomogeneous systems.

The method presents a possible solution to the prob-
lem of long chaotic transient which is very important in



Haibo Xu et al.: Controlling chaos by a modified straight-line stabilization method 69

controlling Hamiltonian chaos. We also show that the
method is robust against the presence of weak external
noise, which is important for practical applications. The
method can be generated to any high-dimensional system,
including both discrete and continuous systems.
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Basic Research Projects, the National Natural Science Founda-
tion of China, and the Science Foundation of China Academy
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